P —

AD=ADS2 022 STANFORD UNIV CALIF DIGITAL SYSTEMS LAB F/6 9/2
EMMY/360 CROSS ASSEMBLER, (V)
DEC 75 'l S ms DAHCO'-TG-Q-GOOI
ARO=12958 . 4=M

rJlrE
ILMED

5—78

1115

l 10 i e

= Mz
|

I
2 s mie

L

1 A
! /7 729 N
FECURITY CLASSIFICATION OF THIS PAGE (When Datu Entered) S P

REPORT DOCUMENTATION PAGE TN e AT ETRVCROM
1. REPCRT NUMHER \/ 2. GOVT AC S10] ~RECHRIEN IS WALOG'N?JM”ER"
W_ﬁ_ﬂﬁ / .:»'[,1 % /\/‘ /17(;
4. EITLE (and Subtitle) } SY NV ORYT & PERTODCOVERED
3i 1
r | EMMY/36@ CROSS ASSEMBLER , / Technical)téte : /
. == = HEL 6 e EORTTTC OTC REPOR T NUMBER

T i ————————

VS
. }_\uTHoa(s) 8. CONTRALT OR GRANT NUMBER(s)

— / —/,’ B s :
Thomas S./Hedges / L gAJA/HC #4-76-G ﬁy/m}\u

“ 9. Pﬁ[{FQRMIi«G ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK
1gita Systems La oratoryv AREA & WOFK UNIT NUMBERS

qgrl Stanford Electronics Laboratories - e et

Stanford Universit (2" T - P /
(= Stanford, CA 9430 - [
q 1). CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

U.S. Army Research Office-Durham /1 | Decomtmn7s /

= . X
10
. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office) 15. SECURITY QL ASS. (of this report)

15a. DECL ASS!FiCATION/ DOWNGRADING
SCHEDULE

. DISTRIBUTIGN STATEMENT (of this Report)

N A 9 @‘\v \
17. DISTRIBUTION STATEMENT (of the ebstract entered in Block 20, if ciifereat from Report) ‘.ﬁ - L)

18. SUPPLEMENTARY NOTES
w it ave mol o be aatried ac AR
’ i g 4 10 v t ave { 0 e ! :
[‘h" £ v 1} AT %} N, JiiCss »u
offici:

designatc

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

20.. ABSTRACT (Contlnue on reverse side if necessary and identify by block number)
A cross assembler and simulator for the EMMY microprogrammable processor has
now been developed and will shortly be generally available for EMMY Lab
users. The program is written in ALGOL W and presently exists on the
Campus 360/67, however, in the future it should also be available at SLAC
or the SCIP 168.\

SECURITY CLASSIFICATION OF THIS PAGE (Whca Data Lntered)

DD 1’;2::”71 1473 EDITION OF 1 NOV 65 1S OBSOLETE 4@)(ACL _/,.1 1 ,._\2/([1'
o, J— Mt VK~

EMMY/360 CROSS ASSEMBLER

by
Thomas S. Hedges

December 1975

Technical Note No. 74

Digital Systems Laboratory
Stanford Electronics Laboratories
Stanford University

Stanford, California

The work herein was supported in part by the Army Research Office-Durham
under contract DAHC O4-76-G-0001.

TP RGNSV s—

A, e AV

Digital Systems Laboratory
Stanford Electronics Laboratories
Technical Note No. 74

December 1975

EMMY/360 CROSS ASSEMBLER
by

Thomas S. Hedges

ABSTRACT

A cross assembler and simulator for the EMMY micro-
programmable processor has now been developed and

will shortly be generally available for EMMY Lab

users. The profram is written in ALGOL W and presently
exists on the Campus 360/67, however, in the future it
should also be available at SLAC or the SCIP 168.

The work herein was supported in part by the Army Research Office-Durham under
contract DAHC O4-76-G-0001.

I. THE CROSS ASSEMBLER LANGUAGE

A. CHARACTER SET: The cross assembler accepts EBCDIC characters,
including ASCII: '[')']',r{".},'

B. TIDENTIFIERS: Identifiers may be from one to eight (8)
characters. Characters beyond the eighth will be ignored by the
assembler. Identifiers conform to the following:

l. First character must be ALPHA(BETIC). wupper or lower
case; or the dollar sign “$°.

2+ The second and following characters, if any. may be
! ALPHA, NUMERIC (°0°-°9°), the dollar sign. or the underscore
(l_l)'

C. RESERVED IDENTIFIERS: Certain identifiers are reserved for
special use of the assembler and are not available to the
programmer as ordinary identifiers. The reserved identifiers are
all upper case alphabetic characters. |

D« COMMENTS: Comments may be included on any assembler statement
by prefacing the comment with a period (°.°) or vertical bar i
(“1°)« A comment may be the only item on a 1line. and totally
blank lines may be included in the input.

E. STATEMENT FORMAT: Statements are coded entirely within card
ceclumns 1-72 and no continuation is allowed. The contents of
columns 73-80 is printed on the listing but otherwise ignoreds.

[<LABEL ID>:] [<T-STATEMENT>] [;<A-STATEMENT>[;<UPDATE PTR>]]

Machine code statements follow the basic form given above,
with numerous minor variations., of course. Blanks, beyond a
single one used to delimit other quantities. are ignored and
coding is free form within a statement.

If no a-statement is coded then it and the semicolon
preceding are omitted., and this also precludes coding any <UPDATE
PTR>« Likewise if the t-statement is not coded. then it is ‘
omitted with the a- statement beginning as shown with a semicolone.

One or more label identifiers may be attached to a statement
by coding each before other items on a given line. and following
each LABEL I.D. with a colon (°:°%). If a LABEL(s) is left
'hanging', (i.e« coded on a line containing no machine statement)

- e -

then the label is assigned the current value of the location
counters

——

F. IDENTIFIER TYPES: The assembler defines different types of
identifiers as follows:

TYPE DESCRIPTION RANGE OF VALUES
ABS ABSOLUTE NUMERIC = o |
SYMB SYMBOLIC LABEL psng2™

: REG HARDWARE REGISTER RO.R1.R2.R3.R4.R5.R6.RT
MASK CONDITICNAL MASK aLL 2" or 2% (?)-(?)-(?)

G« LITERALS: The assembler accepts literal constants coded in
any of the forms belowe. All 1literal constants are 1like an
identifier type ABS. except * which is SYMB.

>DECIMAL nnnnnn 0. 2% 1}

>HEX X ‘nnnnnnnn’ (< 8 HEX DIGITS)
>0CTAL 0 ‘nnn-n’ (< e

>BINARY B (D(])---(§)" (£ 32 BINARY DIGITS)
>CHARACTER C‘ccee” (< 4 CHARACTERS)

(NOTE: Character constants are converted to ASCII and packed
right justified in 8 bit fields. No parity bit is given so
the high bit of all bytes is zero.)

>LOCATION COUNTER - [TYPE IS SYMB]

(NOTE: The ¥ gives the location counter value or the address
of the current instruction being processed.)

He. EXPRESSIONS: Literals and identifiers of types ABS and
may appear in expressions as follows (and only as below):

UNARY -: --ABS NEGATE
UNARY +: ++ABS NULL (NO ACTION)
BINARY - ABS, -- ABSa YIELDS ABS RESULT

SYMB, -- SYMB, YIELDS ABS RESULT
BINARY +: ABSy ++ ABSe YIELDS ABS RESULT
ABS ++ SYMB YIELDS SYMB RESULT
SYMB, ++ SYMB, ERROR
Multiple operators are evaluated from left to right.
parentheses may be useds

I. PSEUDO-OPS:

l. DC - DEFINE CONSTANT

DC <EXPRESSION>

SYMB

No

This statement reserves one word of storage- The statement

may have a label, whose value would be the address of
constant. The <EXPRESSION> may be ABS or SYMB.

2. BLK - BLOCK

BLK <ABS-EXPR>

Reserve <ABS-EXPR> words of storage. The label,

the

if

coded. is the address of the first word. The expression must

be ABS.

3« ORG - ORIGIN LOCATION COUNTER
ORG <EXPRESSION>

Begin assembling code (starting with next statement)
location <EXPRESSION>., which may be ABS or SYMB. It is

at

poor

form to 1label an ORG statement although the assembler

probably would allow it

4. EQU EQUATE SYMBOL

<REG>
<IDENTIFIER> EQU <EXPRESSION>

<MASK>

<IDENTIFIER>

NOTE: MASKS are defined using ‘MASK’ function as
follows:

MASK(KEIGHTBITS>,<NOT>.<ZERO>,<CODES>)

The four fields are all ABS and <EIGHTBITS>
is 0 £255 while the other fields are 0 or 1
onlye

<EIGHTBITS> IS THE TEST MASK
<NOT> =1 . INVERTED SENSE
<ZERO>=1 . TEST INVERTED (FOR ZERO)
<CODES>=z1. TEST INDICATOR CODES
(INSTEAD OF CONDITION CODES)

The EQU <IDENTIFIER> must not have been used as a 1label
identifier nor may it appear at the 1left in another EQU.
The <IDENTIFIER> is given the type and value of the quantity
on the right of the EQU. A register, mask define,
expression, or identifier may appear on the right in the EQU.
A restriction exists that any identifier appearing at the
right. either alone or in an expression. must have been given
its value earlier in the programe.

5« END
END [<LABEL>]
The END PSUEDO-OP marks the last physical statement of

the program. The optional <LABEL> specifies a point to
transfer control to begin execution-

Je T - STATEMENT
l. ARITHMETIC }
To store result & set codes:

+ !

Raf := Raf Y+c+ Rbf
-b- LITERAL 1%
To only set codes:

+
Raf) +c+ Rbf

-b- LITERAL L b

2. LOGICAL
Raf := 0 or -1 X0 %
LITERAL or LABEL ¥o%
NOT <0P2>
Raf <LOG> <Q0P2>
Rbf

= MAY BE USED FOR ‘NOT’
<0P2>: Rbf or LITERAL x2%
<LOG>: AND or OR or NAND or

NOR or XOR or XNOR

NOTE: Raf = Rbf DOES A °LTR®. THAT IS
LOADS AND SET CONDITION CODES

¥1*% LITERAL is assembled short if 0 < LIT < 7 and an
A-STATEMENT is coded, otherwise it is long.

#2% LITERAL or LABEL with value 0 or -1 are assembled
short., other values generate a long literal form.

1

3+ SHIFT.ROTATE

SINGLE:
Raf <S-0P> [Rbf
LITERAL #1%
DOUBLE:
Raf, Raf@l <s-0P> {Rbr i
LITERAL #1%

<S-0P>: << LEFT LOGICAL
<@ LEFT ROTATE
<< RIGHT LOGICAL
@< RIGHT ARITHMETIC
4. EXTENDED
TRANSFER
i Raf = Rbf [NOTE: CONDITION CODES NOT SET]

DIVIDE STEP

DIV (Raf,Rbf)
MULTIPLY STEP
e MUS (Raf,Rbf)
EXCESS SIX
; X$6 (Raf,Rbf)

- ———————————————————— —— - ———— —————— — —— - — - —— - —————————————— -

¥1%# LITERAL is assembled short if 0< LIT <7 and an
A-STATEMENT is coded. otherwise it is longe.

5« EXTRACT/INSERT

Raf (KLIST>) = Rbf (<n, >:<ng>) jCLEAR i
INSERT

KLIST> is one or more of the following separated
by comnmas

ae $142 & <ig> position iy through i, ol L

b <i,> position i,

Rbf is rotated assuming the <ng> of Rbf will be matching
the last i argument (furtherest to -ight) of <LIST> for
Rafs

If ‘CLEAR’ is coded an EXTRACT is done otherwise an
INSERT« The ACTION is to assign the bit field given by
<n,> : <ng> in Rbf to Raf into those bits given by <LIST>
and leave the the others the same (or clear them if
“CLEAR)+

6. CONDITIONAL

([NOT] <MASK> => [;] <A-STATEMENT>)

The entire statement 1is surrounded by a set of
parentheses, including the <A-STATEMENT>. The <MASK>
must bs either the °‘MASK(i g1 51 1) or an IDENTIFIER
with TYPE MASK: The test may ée inverted by specifying
‘NOT . NORMAL if the test is satisfied the <A-STATEMENT>

t is EXECUTED, otherwise it is skippeds

S S ———————————— e

¥1* If i,> i, then positions 31 to i and i to O are selected
(it wraps around). Remember not all possible masks can
be represented in the 18 bit literal field.

Ke

A-STATEMENT

l. STORE REGISTER

M(<EXPRESSION>) = Ref
2. LOAD wZGTSTER

Ref = M(KEXPRESSION>)
3. LOAD IMMEDIATE

Ref = <EXPRESSION>

[this includes <LABEL> s and type SYMB]

4. INDIRECT ACCESS

M(Ref) = X(Rdf)
Ref = X(Rdf)
X(Ref) = Rdf
X(Ref) = M(RdF)
Ref = M(Rdf‘)
M(Ref) = Rdf
Ref = Rdf

NOTE :
Either
Ref

}
Rdf {2}
Ref (%

s Ref
s BdP
¢ Ref

5. POINTER-MOD AND LOOP
ENE Reb
DEC Ref
Ref = Ref{ }Rdf

NOTE:

5
(ltnot3 i<I o |[=] {RO{ JLIT

<LABEL>

To do POINTER UPDATE include

JLALIE (oX
LIET or
LREE ¢

RAf = Rdf {¥} LIT

To do CONDITIONAL LOOP include

)

If <LABEL> is used must be equlvalent to RO X
where -8 < LIT £ 7

LIT,

6«

CONDITIONAL BRANCH

([NOT] <MASK> [=>] ZRO{-’-'}Lit
<LABEL>

Branch part is a above. <MASK> the same as

T-STATEMENT,

}

for condition

APPENDIX

A

Ba

PREDEFINED MASKS

ZERO

NEGATIVE

POSITIVE

OVERFLOW

CARRY CARRY BIT = 1

HIGH HIGH BIT = 1

LOW LOW BIT = 1

SAME ALL, BITS 0 or 1

0DD PARITY IS ODD

BUSY CPU BUS ACCESS IS BUSY

RESERVED WORDS

RO INSERT

R1 CLEAR |

R2]

R3 MUS

R4 DIV E

R5 XS6

R6

R7 DEC ‘
INC 3

AND _ |

OR ZERO ;

NAND POSITIVE

NOR NEGATIVE ;

XOR OVERFLOW |

XNOR CARRY f

NOT HIGH |
LOW

MASK SAME

£QU 0DD

BLK BUSY |

END §

DC %

ORG !

A+ |

M+

+ only when directly followed by “(°

e

